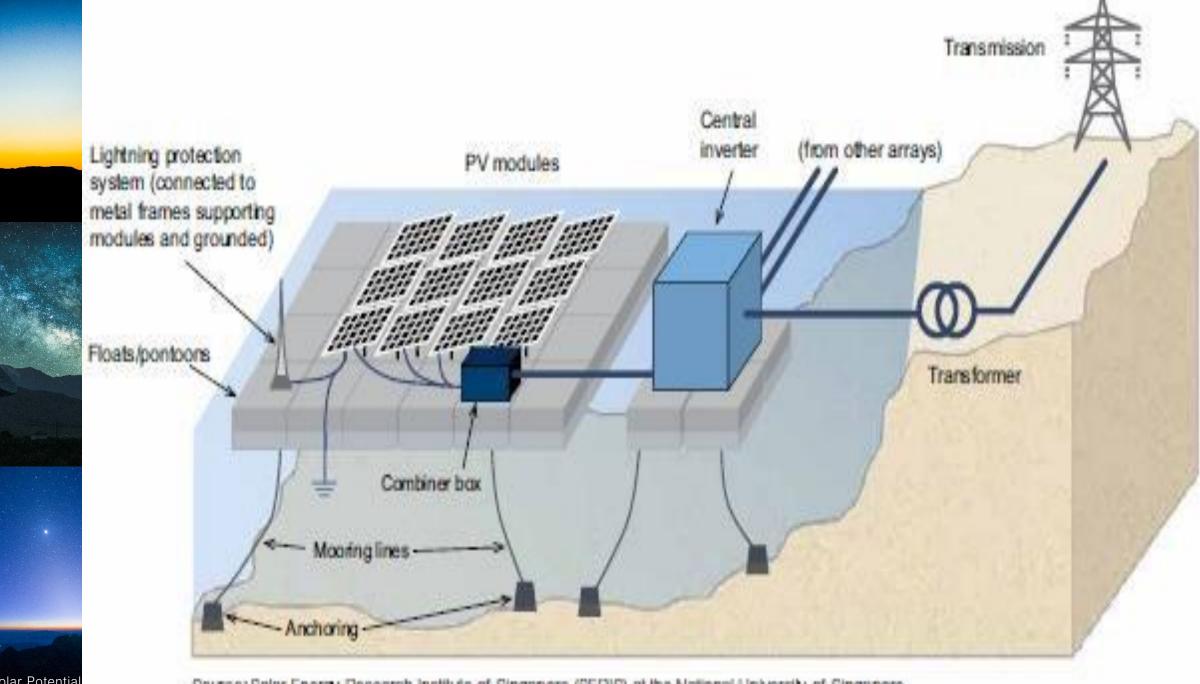
Floating Solar Potential in Bangladesh: Transforming Unutilized Water Bodies into Renewable Energy

December 14, 2024

Dr. Masud Karim, P.Eng., PMP Lead Manager, GE-EC Ltd., Canada

Topics to be Covered


- Floating Solar Plant Components
- Advantages of Floating Solar Plants
- Challenges of Floating Solar Plants
- Global Case Studies of FSP and Plant under Preparation in South Asia
- Prospects of Floating Solar Plants in Bangladesh

Floating Solar Plant Components

- Floating Platforms/Mounting Raft
- Photovoltaic Panels and Modules
- Anchoring and Mooring Systems
- Active Current (AC) Cabling
- Medium Voltage (MV) Transformers
- Power Transmission Systems
- Maintenance Access
- Constructability

Floating Solar Potential

Source: Solar Energy Research Institute of Singapore (SERIS) at the National University of Singapore.

Advantages of Floating PV System

- Land Use Optimization
- Efficiency Improvement
- ✓ Albedo Effect
- Water Conservation
- Environmental Benefits

 Low Impact on Aquatic Life
 Reduced Transmission Losses
 Scalability
 Lower Levelized Cost of Energy (LCOE)

Challenges of Floating Solar Plants

- High Initial Investment
- Technical Maintenance
- Environmental
 Concerns

- Weather
 Vulnerability
- Regulatory Hurdles

Global Case Studies of FSP

- 1. China: Home to some of the world's largest operating floating solar plants, China has utilized former coal mining sites and reservoirs to generate renewable energy. The Anhui province hosts a massive 150 MW floating solar plant, showcasing the scalability of the technology.
- 2. Japan: Japan has adopted FSP on reservoirs and water treatment facilities. The Yamakura Dam hosts a 13.7 MW floating solar plant. It covers approximately 180,000 m² (18 ha) and consists of over 50,000 photovoltaic panels.
- **3.** India: India has launched ambitious plans for floating solar plants to reduce dependency on fossil fuels. The Kayamkulam project (92 MW) in Kerala and the Ramagundam project (100 MW) in Telangana are notable examples.
- 4. Netherlands: Netherlands has integrated floating solar systems with existing water infrastructure, such as floodplains and canals. Sellingen (41.1 MW) and Uivermeertjes (29.8 MW) are two major plants.

Major Plants under Preparation in South Asia

Bangladesh

100 MW Floating Solar Photovoltaic Power Plant Project in Motherganj, Jamalpur.

\$167 million (2022)

India ADB funded 500 MW West Bengal Floating Solar Project in Bakreswar Dam Reservoir Pakistan World Bank-funded 300 MW Floating Solar in Pakistan Project in Ghazi Barrage Headpond and Forebay

\$324.46 million (2021)

Sri Lanka USAID funded 100 MW Floating Solar Project at Castlereigh Reservoir

Project Location Map

Site 1: Ghazi Headpond

Site 2: Ghazi Barotha Forebays

10

20

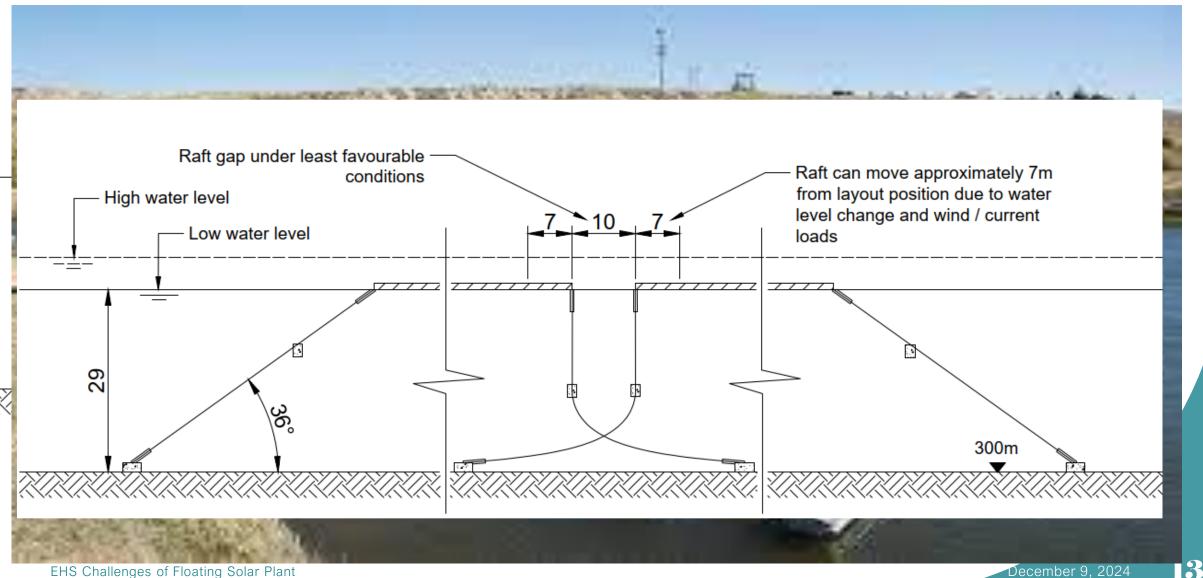
Kilometers

Source: Earl, Makar, GeoBye, Bartistar Geographics, CNES/Altitus DS, USDA, USSS, AsroORID, ISN, and

FLOATING SOLAR IN PAKISTAN PROJECT -A CASE STUDY

Description of the Project Sites

Name of site	Capacity (MW)	Area of water (ha)	Area of panel (ha)	Coverage	Nearest settlement to the construction site
Site 1: Ghazi Barrage Headpond	150	800	165	21%	Galla (north)
Site 2: Ghazi Barotha Forebay	150	400	165	41%	Barotha (east) Dhair (west), Jabba (north)


System Configuration

SI.	Items	Headpond	Forebay
1	Plastic rafts	High-density polyethylene floats	
2	Mono-facial polycrystalline silicon modules	504,000	504,000
3	100kW String inverters	1,500	1,500
4	2,500 kVA step-up to 33 kV Transformers	60	60
5	160MVA step-up to 220kV Transformers	1	1
6	Mounting Structure	Modular floats at a fixed tilt of 12°	
7	Anchoring	Bottom self-weighted concrete blocks anchoring	
8	Mooring line	Weighted mooring line where bed level is irregular.	
9	Pontoon	Facilitate boat access to the floating units	

12

Solar, raft, anchor, and mooring system

December 9, 2024

Risk Category and Screening

Risk Category	Screening Criteria					
High	Large magnitude impact last for long time, extend over a large area, exceed					
	national/international standards, endanger public health and safety,					
	threaten a species or habitat of national or international significance,					
	and/or exceed a community's resilience and ability to adapt to change.					
Substantial	Clear evident change from baseline conditions and approach but not					
	exceed applicable standards.					
Moderate	Noticeable effect, but the magnitude of the impact is sufficiently small that					
	the overall effect remain well within applicable standards.					
Low	Either not be affected or the effect would be imperceptible or					
	indistinguishable from natural background variation.					

Environmental, Health, and Safety Risks

Environmental, Health and	Risk Ratings Before Mitig	ation and Control
Safety Risks, and Impacts	Construction Stage	Operation Stage
Risk of falling in the water and drowning during installation of panels over water	Substantial	Low
Pollution of surface water due to the cleaning of accumulated bird droppings	Low	Substantial (Site 2)
Changes to water quality, thermal structure, and evaporation rate as a result of shading		Substantial (Site 2)
Impacts on fish from shading and anchoring and cabling	Moderate	Substantial (Site 2)
Impact on migratory birds and their habitats	Moderate	Substantial (Site 2)
Aquatic habitat degradation as a result of altered quantity of bird droppings	Low	Substantial (Site 2) Low (Site 1)

Risks of Falling into Water and Drowning

Eliminate

By constructing the FSP in the Land

Substitute

Assemble panels and connect arrays on land Use mechanical equipment over water Engineering Control Use fence and safety nets

Use strong, stable and wide walkways or workplaces over water Administrative/ PPE

Train workers

Devise rescue plan to comply with adverse weather Life jackets

EHS Challenges of Floating Solar Plant

Impacts on Surface Water due to the Cleaning of Accumulated Bird Droppings

<u>Avoid</u>

Collect and safely dispose bird droppings Reduce the size of spaces in between panels

<u>Minimize</u>

Clean the panels frequently during bird migration period

Droppings should not be disposed into the waterbody

<u>Mitigate/ Control</u>

Use bird deterrents and spikes to prevent birds from landing on the panels

<u>Offset</u>

Improve the ecosystem quality of nearby waterbodies to allow winter birds to stage there

Changes to Water Quality, Thermal Structure, and Evaporation due to Shading

<u>Avoid</u>

Build the FPV plant on land instead of water

<u>Minimize</u>

Keep the coverage of each waterbody to a minimum

Allow enough space between panel strings for light to pass through

Install panels in a landscape orientation

<u>Mitigate/ Control</u> Add aeration system Use glass-glass PV modules, to allow light reach waterbody

Schedule low water retention time

Compensate/ Offset

Fund research on improving water and ecosystem quality

Direct Impacts of Shading on Fish, Aquatic Algae and Plankton

Avoid

Build FPV plant on land or other suitable locations

<u>Minimize</u>

Place the panels so light and wind penetration is maximized

Keep string row widths to a minimum by installing solar panels in a landscape orientation

Mitigate/ Control

Use glass-glass PV modules, enabling light to reach the water's surface to minimize ecological impacts <u>Compensate/</u> <u>Offset</u>

Fund research into how to improve the ecosystem given the pressures

Changes to Bird Habitats from Panel Installation

Avoid

Avoid panel installation in waterbodies

<u>Minimize</u>

Use compact panels since they take up less space Install the panel in such a way that

allows more water

surface as staging

ground for birds

Mitigate/ Control

Use efficient solar panels so that fewer panels can generate same electricity

Install barrier and/or non-barrier bird deterrent systems

<u>Compensate/</u> <u>Offset</u>

Improve habitat quality of nearby waterbodies so that birds can also use as staging grounds

Anchoring and Cabling Impacts on Fish

<u>Avoid</u>

Avoiding using underwater anchoring and cabling systems

Minimize

Use less anchors and cables and also fix them in places not frequently used by fishes

Install fish deterrent (strobe light) to alert fishes of the presence of anchors and cables

Mitigate/ Control

Research, survey and monitor fish population, behavior and mortality around cables and anchors

Regular inspection of cables and anchors

<u>Compensate/</u> Offset

Create a feeding schedule for the fish so they are not limited by nutrients

Degradation of Aquatic Habitat Due to Bird Droppings

<u>Avoid</u>

Reduce the size of the cracks in between the panels

<u>Minimize</u>

Frequently clean bird droppings to minimize bulk accumulation, and do not dispose droppings into the waterbody

Mitigate/ Control

Use bird deterrent to scare birds from landing on the panels

Use nets around the panels to restrict birds from making nests under them <u>Compensate/Offset</u> Improve habitat and ecosystem quality of nearby waterbodies to allow winter birds to the stage there instead

Prospects of Floating Solar Plants in Bangladesh

(1) KAPTAI LAKE

- Largest man-made freshwater lake, spans 688 km² (68,800 ha) in Rangamati with maximum depth 53m.
- Supports power generation, irrigation, fisheries, and transportation.
- Utilizing 10% of its area could generate 6,200 MWp of electricity,
- An initial \$6.2 billion investment (2021 price).

(2) HAKALUKI HAOR

- Largest freshwater wetlands, spans 181.15 km² (181, 000 ha) across Moulvibazar and Sylhet depth varies from 1.5-2 m in the dry season to 6-7 m during monsoons.
- Harnessing 10% of its area could generate 1,600 MWp of renewable energy,
- An estimated \$1.6 billion investment (2021 prices).

(3) CHALAN BEEL

- Largest wetland, spans 368 km² (36,800 ha) across Pabna, Natore, and Sirajganj, depth ranges from 1–2 m in the dry season to 4–5 m during monsoons
- Utilizing 10% of its surface could generate 3,300 MWp of electricity
- Requires \$3.3 billion investment (2021 prices)

Thank You

Dr. Masud Karim, P.Eng., PMP Email: mkarim@geec.ca